<name> Class: Honors Geometry Date: <date></date></name>	
Topic: Lesson 5-5 (Ineq Addition POI	ualities in Triangles) If $a > b$ and $c \ge d$, then $a + c > b + d$
Multiplication POI	If $a > b$ and $c > 0$, then $ac > bc$ If $a > b$ and $c < 0$, then $ac < bc$
Transitive POI	If $a > b$ and $b > c$, then $a > c$
Comparison POI	If $a = b + c$ and $c > 0$, then $a > b$
Corollary	$\frac{\text{Corollary to the Triangle Ext Angle Thm}}{\text{The measure of an ext} \angle \text{ of } a \Delta \text{ is greater than}} \xrightarrow{2}_{2} \xrightarrow{1}_{1}$ measure of ea of its remote int $\angle s - m \angle 1 > m \angle 2$ and $m \angle 1 > m \angle 3$
Theorem 5-10	If 2 sides of \triangle are not \cong then larger side lies opp. larger \angle : If $XZ > XY$ then $m \angle Y > m \angle Z$.
Theorem 5-11	If $2 \angle s$ are not \cong then larger sides lies opp. larger \angle . If $m \angle Y > m \angle Z$ then $XZ > XY$.
Example	Pg 275 Check Understanding 3YList sides of ΔXYZ shortest to largest. Explain. $m \angle Y = 80$ thus $YZ < XY < XZ$
Theorem 5-12	Triangle Inequality TheoremSum of lens of any 2 sides of Δ is greater than len of 3 rd side. $XY + YZ > XZ$ $YZ + XZ > XY$ $XZ + XY > YZ$ $XZ + XY > YZ$
Example	 Pg 276 Check Understanding 4 Can a ∆have the given lens? Explain. a) 2m, 7m, and 9m - no; 2+7 is not greater than 9 b) 4yd, 6yd, and 9yd - yes; 4+6>9;6+9>4;4+9>6
Example	Pg 276 Check Understanding 5 A Δ has sides len 3in & 12in. Desc lens possible for 3 rd side. 12 + 3 = 15 so the 3 rd side must be less than 15. 12 - 3 = 9 so the 3 rd side must be greater than 9. Therefore $9 < x < 15$